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Abstract

Due to the increasing costs of healthcare in our modern society, it is important to en-

sure that people are taking preventative measures and getting sufficient physical activity.

However, most research looking at physical activity measurements do not take into ac-

count the individual performing household activities during normal daily living. As such,

this paper seeks to measure physical activity levels in the home environment. Energy ex-

penditure (EE) is the best metric of quantifying physical activity levels. Computer vision

and deep learning methods have been gaining in popularity of late with regards to EE

estimation. However, most of these studies do not produce a direct mapping from video

data to EE, but instead take a two-step approach by first performing activity recognition

before using activity-specific models to estimate EE for each activity detected. This is

typically done using METs tables, but this is largely inaccurate and comes with several

problems associated with METs tables.

In this paper, we seek to use silhouettes extracted from RGB-D data along with ac-

celerometer data in order to produce a direct mapping to EE. The use of silhouette data

is motivated by privacy and anonymity concerns for individuals being monitored in the

home environment. Using a fusion of both temporal silhouettes and accelerometer data in

a convolutional network to estimate EE, this technique allows the subjects to move around

freely without being inconvenienced by complex instruments. The network is trained and

cross-validated on the SPHERE-Calorie dataset [62], achieving comparable results to the

work by Masullo et al. [45].

In the future, this project can be extended in several different ways, such as by intro-

ducing physical activity labels as a target when training the network, or even by altering

the network architecture in order to achieve better estimation accuracy.
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Chapter 1

Introduction

1.1 Motivation

Physical activity is important for the health of the individual and of the general pop-

ulace [27]. There is evidence suggesting that a higher volume of physical activity can

result in a reduction in all-cause mortality [41]. A lack of regular physical activity has

been linked with a number of chronic diseases, including cardiovascular disease, hyperten-

sion, obesity, thromboembolic stroke, anxiety and depression [35]. Conversely, a healthy

amount of physical activity has been shown to lead to a reduction in some of these major

causes of death, such as for strokes and cardiovascular disease. Older adults also tend

to encounter a higher risk of developing problems due to musculoskeletal deficiencies and

cardiovascular conditions. However, regular physical activity has been shown to demon-

strate a statistically significant drop in the health risks associated with age [18].

In the UK alone, the NHS spends upwards of £6 billion from its annual budget on

diseases related to physical inactivity and overweight and obesity [58]. It’s clear that im-

provements need to be made for health care services throughout the world. With the rise

of deep learning methods however, these technologies and methods have the potential to

pave the way towards a new era of predictive health care systems [46]. There are a wide

range of applications for this: disease prediction, treatment recommendation as well as

prediction of medication effects, to name but a few of these areas where predictive health

care can provide improvements to. One other important use case is in the measurement of

physical activity. Being able to measure a person’s physical activity is useful not just for
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CHAPTER 1. INTRODUCTION

the general health and wellbeing of the population, but also to ensure that people with,

or at risk of, certain chronic diseases are able to be monitored for poor health. Typically,

a doctor or a medical practitioner has to be present with the patient in order to perform

diagostic tests to measure the patient’s physical fitness and physical activity levels. This

is problematic as these are resources that could be better used for treating a wider range

of people. Furthermore, measuring physical activity levels in this way does not take into

account the physical activity levels from normal daily living in the home environment.

Thus, accurate measurements of physical activity levels in the home environment is vital

to monitoring the health of these individuals over a long period of time [57].

When it comes to quantifying physical activity levels, the most commonly used metric

is energy expenditure (EE), otherwise known as calorific expenditure. Several different

methods for estimating EE have been presented over the years, such as using metabolic

equivalents (METs) tables [2], to indirect calorimetry by measuring oxygen uptake and

carbon dioxide output [24], to direct calorimetry which measures the total heat dissipated

by a person’s body [34]. These methods tend to be invasive and costly, while in the case

of METs tables, often requires self-reporting by the subject and does not account for in-

dividual factors specific to the subject, leading to inaccuracies. With the rise of wearable

inertial sensors however, monitoring a person’s physical activity levels can be performed

much more conveniently and noninvasively. With more and more devices having network

capabilities, the Internet of Things (IoT) through the use of frameworks such as Inter-

net of Things based Physical Activity Monitoring (PAMIoT) [53] shows a lot of promise

in enabling cost-effective health monitoring. Indeed, embedding sensors into articles of

clothing has become much easier in recent years, as can be seen in the work done by Morris

et al. [47] which integrated sensors into shoes to monitor gait. Furthermore, accessories

such as smartphones, smart watches and wireless fitness devices that have become a large

part of daily life provide unobtrusive means of obtaining sensor data. Particularly, Fitbit

devices have been shown to have the potential to provide accurate and reliable estimations

of EE during walking and running. [21].

In comparison, a video based system for estimating EE would be able to provide

richer data as direct motion recognition can be extracted without needing any extra de-
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1.2. CONTRIBUTIONS OF THE THESIS

vices to be worn. Furthermore, camera systems used in home monitoring do not need

to be constantly charged unlike most wearable devices. Vision-based estimation using

RGB-D cameras has been shown to give very accurate EE estimations [64]. In addition

to this, a system using both vision and accelerometers simultaneously has the potential

to improve EE estimation beyond that of just video data [48, 63]. While video data can

provide richer analysis of physical activity, this also raises the issues of patient privacy and

consent [7]. Patients tend to be quite critical and reluctant towards medical technology

within spaces as private as the home environment, fearing unauthorized data transfer and

access, and the alteration or loss of data [76]. Privacy has been said to be the greatest

obstacle against smart home systems [30]. One of the techniques to address these privacy

concerns has been to convert the raw RGB-D data into bounding boxes, silhouettes and

skeletons, as has been performed in the study by Hall et al. [25] for the Sensor Platform

for HEalthcare in a Residential Environment (SPHERE) project [52], in the hopes of in-

creasing patient anonymity and allowing for more scalable data sizes. This method also

has implications for IoT platforms, as the switch to silhouette data helps to minimise

the leakage of sensitive data [45]. With regards to the effectiveness of this method, this

thesis will make use of one of SPHERE’s existing datasets, SPHERE-Calorie [62] (first

presented in [64]), which contains RGB and depth data along with accelerometer data.

The key point about this dataset is the inclusion of gas exchange-based calorimeter data

which provide ground truth calorific values, allowing for a very accurate cross-validation

of the energy estimation results.

1.2 Contributions of the Thesis

In this paper, we replicate the work done by Masullo et al. [45] on online EE estimation

using silhouette data in the home environment. The fused convolutional neural network,

CaloriNet, that was presented in their work will be used as a basis with which to work with

the SPHERE-Calorie dataset. As a BSc student, I only have a simplistic understanding of

neural networks, having not studied deep learning as a unit. This means that a significant

amount of self-studying needs to be put towards understanding neural networks in practice

by learning the Keras toolchain along with TensorFlow. In order to train the network,
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CHAPTER 1. INTRODUCTION

BlueCrystal is required due to the large computational cost of training. Having to learn

how to work with BlueCrystal and submit batch jobs comes with a separate set of problems

as well, including the handling of large datasets such as SPHERE-Calorie. This requires

some techniques in data organisation and management.
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Chapter 2

Background

2.1 Estimation of EE

EE estimation in real-time is far from a simple problem, as there a number of factors

besides physical activity that contribute to total EE, including but not limited to a per-

son’s fitness, metabolism, pathological conditions and environmental conditions such as

temperature [15]. However, there is still a strong correlation between the type and inten-

sity of activtiy performed and EE. In order to compare the coding of physical activities,

the Compendium of Physical Activities [2] was developed using a five-digit coding scheme

defined as the ratio of work metabolic rate to resting metabolic rate (METs). While this

offers a quick method of estimating EE, it does not provide precise measurements of EE

for an individual as it does not account for differences in age, gender, body mass etc.

Furthermore, different people might characterize the intensity of an activity differently,

and similarly for how the person performs the activity. As such, differences in EE for

the same activity can be quite large depending on the individual subject, and might not

reflect the person’s true EE. Another problem with using this system is that new activities

might be observed that are not included in the table. While the effect of this has been

reduced with an updated version of the Compendium [1] which extended the number of

physical activities listed, this solution only remains relevant until more complex activities

or combinations thereof are required to be observed.

Early studies involving physical activity measurement used self-report methods, the

most widely used of which include physical activity questionnaires, physical activity
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CHAPTER 2. BACKGROUND

records and diaries [49]. While these methods provide an easy and affordable way of

conducting large cohort studies, they are largely limited by low accuracy and reliability

of physical activity measurement [5]. Furthermore, questionnaires also rely on the partic-

ipant’s ability to recall previously performed physical activity which increases the chance

of memory bias, leading to more inaccuracy in the data [61].

Direct calorimetry is widely considered to be the gold standard for EE estimation,

and is the most accurate method for quantifying metabolic rate [32]. However it has

since fallen out of fashion due to the high cost of operation and the technical challenges

associated with it. This method directly measures the heat energy dissipated by a subject

by placing the subject within a small, insulated chamber [34]. There are four different

types of direct calorimeters that measure this heat energy through different methods:

isothermal, heat sink, convection and differential [32]. Indirectly calorimetry on the other

hand, is much more widely employed for measurements of energy expenditure [34]. This

technique estimates energy expenditure by measuring the subject’s uptake and output of

oxygen and carbon dioxide [42]. Of the different methods of indirect calorimetry, doubly

labeled water is often cited as the most reliable method for assessments of physical activity.

It is non-invasive and unobtrusive, allowing for a reliable means of monitoring the energy

expenditure of free-living subjects over 1-2 week periods [72]. Indirect calorimetry is

typically used as a method of validating other methods of estimating energy expenditure,

as these tools are usually limited by requiring very costly equipment. In the case of

face mask indirect calorimetry, a high burden is placed on the subject as the mask is

obtrusive, and while doubly labeled water solves this issue, it is also limited by the fact

that obtaining the stable isotopes of water required involves considerable difficulty [72].

2.1.1 Heart Rate Monitoring

It is clear that more individual-oriented approaches to EE estimation are required. One

of the more widely used methods nowadays is heart rate monitoring, which is a physio-

logical indicator of physical activity and thus, energy expenditure. It relies on the linear

relationship between a person’s heart rate and their consumption of oxygen, but this re-

lationship is less accurate during sedentary or low intensity physical activities [20]. Heart

rate monitoring is also limited by the fact that other unrelated factors besides physical
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2.1. ESTIMATION OF EE

activity can affect oxygen consumption, such as body position, stress, food intake, am-

bient temperature) [43]. It is also important to note that heart rate monitoring is only

able to measure a person’s response to an activity i.e. their oxygen consumption, but not

the identification of the activity itself [43]. The main benefits of heart rate monitoring

are that they provide an unobtrusive means of obtaining real-time data from a subject

without requiring much effort from the subject [60]. These devices are also much better

suited than accelerometers and pedometers for measuring physical activities that involve

the upper body, and activities such as swimming and cycling [19].

In a study by Ceesay et al. [14] involving minute-by-minute heart rate monitoring using

commercially available monitors at the time, the proposed method was found to produce

satisfactory predictions of EE for its low cost of resources. However, estimating EE in

this way requires some level of individual calibration as everyone has different resting

heart rates and fitness. More recently, a study by Altini et al. [3] proposed a method that

involved estimating cardiorespiratory fitness (CRF) from heart rate, and then using the

CRF as a predictor in a hierarchical Bayesian model for EE estimation. This technique

was able to reduce the error in EE estimation without requiring individual calibration.

2.1.2 Accelerometry

Accelerometers, sometimes referred to as inertial or wearable sensors, measure acceler-

ation in order to determine body movements in one (uniaxial), two (biaxial) or three

(triaxial) orthogonal planes (anteroposterior, mediolateral and vertical) [17]. Typically,

triaxial accelerometers are used as they are richer in providing 3-dimensional data. The

raw acceleration signals produced by accelerometers are known as counts, which have to

be translated or calibrated into some other interesting metric in order to then quantify

physical activity. These metrics could be either physical activity patterns (e.g. walking,

standing) or a biological variable (e.g. energy expenditure, oxygen consumption) [23]. In

the case of energy expenditure, regression equations are used on the raw count data to de-

rive point estimates of EE [23,29]. Accelerometers have been gaining popularity in recent

times as they are objective, lightweight, require minimal effort from subjects, and can be

applied over extended periods of time on free-living participants. These devices have also

7



CHAPTER 2. BACKGROUND

proven to be reliable in estimating EE, for example, the Tracmore is a model that has

shown comparable results when validated with doubly labeled water as a reference [10].

They are also able to provide information about the frequency and intensity of physical

activity, by using regression analysis to define accelerometer-derived count cut-points that

correspond to different physical activity intensity levels [29]. However, it is important to

note that there is a relationship between different cut-points and the estimation of phys-

ical activity intensity [44]. This leads to inconsistencies on how to determine suitable

cut-points, particularly amongst youth samples, and this lack of standardization requires

a consideration of the methodology and sample characteristics [36]. Accelerometers suffer

from several other limitations, being unreliable for assessing upper body activities such

as lifting or throwing [72], and some devices are unable to differentiate between body

positions such as sitting, standing or lying down due to being unable to provide postural

information [26].

There are a great number of different combinations of where acccelerometers can be

worn, each providing data for different sets of activities that could be performed [17].

More recently however, some studies have attempted to combine multiple accelerometers

placed at different body segments with different arrangements in order to improve the

accuracy of energy estimation. A study by Zhang et al. [74] introduced the Intelligent

Device for Energy Expendiutre and Activity (IDEAA) that made use of five miniature

accelerometers attached to the chest, midthigh of both legs and both feet. The IDEEA

was able to estimate energy expenditure of physical activity with an accuracy >95% when

compared to mask calorimetry and respiratory chamber calorimetry, showing that multi-

ple sensors can be applied in estimation of EE. On the other hand, the study performed

by Altini et al. [4], found that it is sufficiently accurate to use one accelerometer near the

person’s center of mass provided that an activity-specific EE estimation model is com-

bined with it. It was also found that increasing the number of sensors, provided that

the optimal accelerometer positioning is chosen, does not result in any significant error

reduction in EE estimation.

Some studies have attempted to combine accelerometry with other physiological mea-

surements. One such study combined accelerometers with heart rate monitoring and
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2.1. ESTIMATION OF EE

found an improvement in the precision of prediction of oxygen uptake, especially so in

the case where accelerometer data was input separately from heart rate data rather than

as simultaneous input [10]. The Actiheart is a device that combines both heart rate and

unaxial sensors into a single-piece monitor. It was demonstrated to be able to predict EE,

using a combined model, to a higher precision than using either parameter alone during

standardized technical conditions i.e. walking and running [12]. When combining ac-

celerometers with other physiological measurements, it is worth investigating the impact

of the placement of the accelerometers on the accuracy of EE estimation. The research

done by Ellis et al. [22] combined accelerometer data and heart rate data, and compared

the effectiveness of accelerometers worn on the wrist versus on the hip in predicting EE.

Using random forest classification and regression trees, this study found that the hip ac-

celerometer was better overall at estimating EE and predicting locomotion, while wrist

accelerometers were more suited to predicting physical activites involving substantial arm

motions.

There is a growing trend in the use of wearable devices and smart devices equipped with

motion sensors for the purposes of tracking physical activity levels for exercise purposes.

One of the most common commercially-available wearable devices is the Fitbit, which

have the main benefit of having wireless capabilities for interfacing with mobile devices,

allowing subjects to efficiently and easily share physical activity information with their

physicians. The hip-based Fitbit One and the wrist-based Fitbit Flex have been shown

to provide reliable estimations of step count and energy expenditure during walking and

running when validated against gas-based indirect calorimetry, with the hip-based model

outperforming the wrist-based device [21]. In a study by Noah et al. [50], the Fitbit and

Fitbit Ultra devices were found to estimate energy expenditure reliably when compared

to the Actical, a well-validated accelerometer, and the Cosmed K4b2 indirect calorimetry

device. However, it is important to note that both of these studies only tested a small

subset of possible physical activites, i.e. walking and running, and these devices have

not been validated for measuring non-ambulatory activities, such as weight training and

cycling, and free-living household activities. A study by Cvetković et al. [75] made use

of the accelerometers on both smartphones and wrist-worn devices (smartwatches and

sensor-equipped wristbands) to perform accurate activity recognition and estimation of

9



CHAPTER 2. BACKGROUND

energy expenditure. Their activity-monitoring algorithm was able to perform with an

individual device or a combination of both, and produced comparable estimations of

EE to using the BodyMedia Fit Advantage armband, a dedicated sensor device, and

the Oxycon mobile indirect calorimeter. More importantly, this study was conducted

with both normal daily living activities (e.g. lying down, eating, cleaning) and exercise

activities (e.g. walking, running) and shows promise for activity monitoring in the home

environment.

2.2 Computer Vision for EE Estimation

Computer vision and machine learning has seen many advancements in the recent decade,

allowing researchers to tackle the problem of activity recognition and EE estimation using

optical-based methods. While activity recognition using data is a problem that has been

studied extensively [33, 39, 67], the effectiveness of computer vision algorithms for EE

estimation is a question that remains to be solved in full.

2.2.1 Physical Activity Recognition

There are two main complementary features that affect activity recognition in video-based

systems: appearances and temporal dynamics [71]. With advancements in deep learning

research, there has been a rise in the use of deep learning techniques in the field of com-

puter vision, particularly for image classification [37]. In particular, deep convolutional

neural networks (CNNs) have been shown to be well-suited to the task of action recog-

nition in videos [59, 65] as they are capable of extracting accurate assumptions about

representations from raw visual inputs. However, in the region of activity recognition

in videos, features learned from end-to-end deep CNNs have yet to show significant ad-

vancements over the traditional method of using hand-crafted features [71]. Hand-crafted

features refer to low-level descriptors that capture the appearance and motion informa-

tion of the video, such as histograms of oriented gradients (HOG) and histograms of

optical flow (HOF) [38], motion boundary histograms (MBH) [70], Local Trinary Pat-

terns (LTP) [73], and so on.

Due to how activity recognition is affected by the temporal durations of the video

10
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input, it is important that the temporal structure of the video data is modeled. Pirsiavash

et al. [51] proposed a method of capturing the temporal structure of complex actions in

a hierarchical manner through the use of a segmental regular grammar of actions. Some

recent works have made attempts to model long-range temporal structures through the

use of CNNs and recurrent neural networks (RNNs). The work by Ng et al. [31] compared

the use of a CNN with feature pooling and a RNN using a Long Short Term Memory

(LSTM) architecture, against the state of the art at the time, finding a significant increase

in accuracy for videos up to two minutes in duration. A study by Wang et al. [71] focused

on creating a general framework for video-level learning, coined temporal segment network

(TSN). By working with a sequence of short snippets sampled from the entire video, this

segment based sampling method was able to outperform previous works that operated on

a single frame or a short frame stack.

2.2.2 EE Estimation Algorithms

When it comes to using computer vision to estimate EE, there are two main ways of ap-

proaching this problem: activity-specific models that split the process into activity recog-

nition followed by EE estimation specific to the activity detected, or models that produce

a direct mapping from visual data to energy expenditure. For the former, one commonly

used approach is using METs tables to estimate the EE of each activity detected [69].

However, this technique would still be plagued by the inaccuracies and drawbacks of using

METs tables as described previously. The Microsoft Kinect is a popular device due to

its ability to capture depth data and to track body joints simultaneously in 3D, and was

used in a study by Tsou and Wu [66]. Using the movement tracking of body joints as

accelerometers, this study was able to accurately estimate calorie expenditure. That be-

ing said, this method suffers from some drawbacks as the study was validated on calorific

values obtained from heart rate monitoring devices, which is not the gold standard for

calorific ground truth, and the use of skeleton data from a Kinect requires the user to be

facing the camera in order for joint tracking to be accurate.

A study conducted by Nakamura et al. [48] introduced an egocentric approach to

using computer vision in EE estimation, combining combining egocentric video data with

accelerometer and heart rate data to produce both activity recognition and estimation
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CHAPTER 2. BACKGROUND

of EE. This technique was shown to produce comparable results to the current state-of-

the-art. A more relevant approach is in the work by Tao et al. [63], which fused both

RGB-D data and accelerometer data in order to perform EE estimation. This method does

not perform direct mapping from visual data to calorie estimation, but instead performs

activity recognition first before estimating EE. Using both feature-level and decision-level

fusion, they were able to accurately estimate EE when validated against face mask indirect

calorimetry data. While this is very promising, it also requires the use of full RGB-D data

which is unsuitable in use cases where privacy is a requirement [45].
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Chapter 3

Technical Background

3.1 Silhoutte Extraction

In order to restrict the amount of visual information of the subjects in private environ-

ments, it is important to perform silhouette extraction on the images being captured.

This is important for the privacy and anonymity of the individuals, and also to ensure

that if data is leaked from the system, it does not contain easily identifiable information

that could be traced back to the subject [16]. One such method of converting RGB-D

data to foreground silhouttes, proposed in [45], is to perform RGB depth-based segmen-

tation on the image. Images are first processed using OpenPose to extract skeleton data

of the subjects along with their associated bounding boxes. By then performing k-means

clustering on the RGB-D values within each bounding box, it is possible to produce the

silhouette of the subject. Once this is done, the RGB-D images are simply discarded so

that only the silhoutte data is left.

OpenPose [13] is an open-source realtime system for 2D pose estimation (body, foot,

hand and facial keypoints) capable of handling images with multiple persons. This tech-

nique uses a multi-stage convolutional neural network (CNN) where an image is used as

input for the network to predict both the confidence map of body part locations and

the degree of association between body parts, known as the part affinity field (PAF). A

greedy inference is then used to parse both of these parameters in order to associate body

part candidates, producing the output of all the keypoints for each person in the image.

While this seems very computationally expensive, OpenPose is able to perform in realtime
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through the use of a CUDA-enabled Nvidia GPU. While OpenPose can be run on CPU-

only devices, it is significantly slower on such devices. Another benefit of using OpenPose

is that it provides an integrated pipeline for processing images, including a frame reader, a

means of visualising the results and also generates the output in easily readable JSON files.

An alternative to using k-means clustering is to use more sophisticated techniques

of segmenting the foreground and background. GrabCut [55] is a foreground extraction

technique using iterated graph cuts that could be applied to segmenting the silhouette

foreground from the background. It first models the colour data in the image using

a Gaussian mixture model (GMM) for both the foreground and the background. It

then iteratively performs the minimisation of an energy function using a minimum cut

algorithm, described in [11], until convergence is achieved. The benefit of this approach is

that it is robust, being able to achieve accurate segmentation in images where there is no

clear distinction between foreground and background colour distributions. However, while

its runtime is reasonable for normal applications, it may not be suitable for processing

large amounts of video data, as compared to the quick runtime of k-means clustering in

practice.

Temporal Silhouettes

As mentioned before, the temporal durations of the video input have a strong effect

on both activity recognition and EE estimation. Modelling the temporal structure of

video data is one method of handling this effect, but there are some considerations when

attempting this. A dense approach to temporal sampling by loading a large buffer of im-

ages with a pre-defined sampling interval into the network would require both an excessive

amount of computational power and a large amount of memory [71]. Due to the imprac-

ticality of dense temporal sampling for untrimmed video data, there is value in looking

at different ways of compressing video data without the loss of important information.

Some studies have looked into different techniques of transforming video data into more

compact representations, such as by converting an entire video sequence into a binary

cumulative motion image known as motion-energy images (MEI) [9], or by summarising a

video sequence into a single dynamic image through the use of of a ranking classifier [6].
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While these techniques may not be as suitable when dealing with silhouette data from

SPHERE-Calorie, they help to show that a compact representation of video data can be

useful in the estimation of EE. The work by Massulo et al. [45] introduced the idea of

using average silhouettes over variable timescales in order to reduce the dependency of

the network on any specific temporal scale chosen.

3.2 Neural Networks and Network Architectures

3.2.1 Theory of Neural Networks

The topic of neural networks has been mentioned several times throughout this paper

without a proper explanation. The theory behind neural networks is not a new one, but

has seen a surge in popularity in the recent decade with advancements in computational

power. Much of this section has been adapted from Bishop [8]. The principal idea behind

neural networks is the use of a fixed number of basis functions in which the parameter

values are adapted during training. These parametric nonlinear basis functions usually

follow the form

y(x,w) = f

(
M∑
j=1

wjφj(x)

)
(3.1)

where f(·) is a nonlinear activation function. A typical hidden layer in a neural network

is constructed using M linear combinations of the input variables x1, . . . , xD such that

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 (3.2)

The superscript (1) indicates that the parameters here correspond to the first layer of

the network. Here, w
(1)
ji and w

(1)
j0 are the weight and bias parameters respectively. The

activation aj is then transformed using a nonlinear activation function h(·), typically

chosen to be sigmoidal functions.

zj = h(aj) (3.3)

The resulting values zj are called hidden units, which are then linearly combined to

construct the output layer of the network

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 (3.4)
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for K number of outputs, where k = 1, . . . , K. Similar to the hidden layer, the output

units are transformed using an appropriate activation function, except that the choice

of activation function now depends on the nature of the data, producing the final set of

network outputs yk

yk = f(ak) (3.5)

Combining all these stages together, we can see that the neural network model is just a

nonlinear function that takes a set of input variables {xi} and returns a set of output

variables {yk}, controlled by adjustable parameter weights in a vector w, taking the final

form

yk(x,w) = σ

(
M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(3.6)

In order to then train the network and determine the network parameters, one approach

when dealing with a feed-forward network is to minimise a sum-of-squares error function

given K input vectors {xk} and K target vectors {tk},

E(w) =
1

2

K∑
k=1

(
y(xk,w)− tk

)2

(3.7)

allowing us to arrive at the error on the output layer. A simple technique, originally

presented by Rumelhart et al. [56], of performing this minimisation is to backpropagate

this error and iteratively update the weights on each layer of the network through the use

of gradient descent. Assuming that the dataset is i.i.d, we can say that the error function

is comprised of a sum of terms, one term for each data point in the training set such that

E(w) =
N∑

n=1

En(w) (3.8)

Keeping in mind that each unit simply performs a computation over all its inputs, pro-

ducing a weight sum such that,

aj =
∑
i

wjizi (3.9)

where wji is the weight associated with the connection between a unit i to a unit j, and

zi is the activation of unit i. As we did before, we use a nonlinear activation function h(·)

to transform this sum, producing the activation zj of unit j

zj = h(aj) (3.10)
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Since En only depends on the weight wji through the summed input aj into unit j, we

evaluate the derivative of En with respect to the weight wji,

∂En

∂wji

=
∂En

∂aj

∂aj
∂wji

=
∂En

∂aj

∂

∂wji

∑
i

wjizi

= δjzi

(3.11)

where we have used the notation δj ≡ ∂En

∂aj
. This equation shows that calculating the

derivative is as simple as a multiplication of δj and zi, where δj represents the error for

the unit at the output end of the weight and zi represents the activation at the input

end. Thus, in order to evaluate the δ value for the hidden layer, we can perform a similar

operation on the next layer

δj ≡
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

= h′(aj)
∑
k

wkjδk

(3.12)

for all units k to which unit j sends connections to. This final equation is the backprop-

agation formula, which tells us that the value of δ for a certain unit, usually referred to

as an error, can be obtained by propagating the errors backward from units higher up in

the network.

3.2.2 Network Architectures

Convolutional neural networks are an approach to building invariance properties

into the structure of a network in order to deal with transformations of the inputs, first

introduced by LeCun et al. [40]. CNNs are very well suited for the task of processing

images and thus, very useful in the field of computer vision. This is due to how pixels in

images have a stronger correlation with other nearby pixels as compared to pixels further

away. A typical CNN makes use of two operations: convolutions and pooling. In image

processing, a convolution can be thought of as a weighted sum within a spatial region

when a small kernel image K is passed over that region, and then performed over the

whole image I.

Sij =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.13)
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Using different kernels produces different types of convolved images, some examples in-

clude a kernel for blurring that simply averages the values in a region, or for edge detection

by using the values -1 and 1 on two adjacent pixels which produces a non-zero value for

adjacent pixels with very different values, i.e. edges. For neural networks, the convolu-

tion operation can be thought of as using the weights as the kernel in order to extract

local features from the data. Pooling, on the other hand, is an operation that allows the

network to be invariant to transformations in the data such as translations and scaling.

One popular pooling method is called max-pooling, which takes the maximum of features

over small blocks of a previous layer,

Sij = max{xij}i=N,j=M
i=1,j=1 (3.14)

This operation allows us to find out if a feature is present in a region of the previous

layer, but not its exact location. This means that it is more important for something

to be present, rather than where it is present, allowing the network to be invariant to

transformations in the data.

Recurrent neural networks are distinct in that they are designed to model sequen-

tial data. The recurrency comes from performing the same task for every element in a

sequence, where the output is dependent on the previous computation, such that

s(t) = f(s(t−1), x(t)) (3.15)

In this sense, s(t) can be thought of as the ”memory” of the network, capturing information

about previous calculations. Since the same task is performed at every layer, a RNN shares

the same parameters at each layer unlike other neural networks. RNNs seem to be very

well suited to the task of natural language processing but has also seen some applications

in activity recognition using computer vision [31].
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Chapter 4

Methodology

4.1 Dataset

The method used in this paper is evaluated on the publicly available SPHERE-Calorie [62]

dataset. This challenging dataset was captured in a home environment and includes RGB-

D and accelerometer data along with ground truth values captured using a COSMED

K4b2 indirect calorimeter. A total of 10 subjects with varying human body measurements

were used to generate this dataset over 20 sessions. The participants had an average age

of 27.2 ± 3.8 years, with a mean height and weight of 173.6 ± 9.8cm and 72.3 ± 15.0kg

respectively. The 7 male and 3 female participants had a mean body mass index of 23.7

± 2.8. Each participant was recorded with an RGB-D Asus Xtion camera placed in the

corner of a living room, and fitted with two accelerometer sensors on the waist and wrist

respectively, and a calorimeter. Colour and depth images were recorded at a rate of 30Hz,

Figure 1: Sample images of each activity performed by different subjects in the dataset.
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Activity MET Value

sit still 1.3

stand still 1.3

lying down 1.3

reading 1.5

walking 2.0

wiping table 2.3

cleaning floor stain 3.0

vacuuming 3.3

sweeping floor 3.3

upper body exercise 4.0

stretching 5.0

Table 1: Activities and their associated MET values

while accelerometer data was sampled down to 30Hz from abaout 100Hz.

11 daily-living activity categories were recorded in a predetermined sequence per ses-

sion: stand still, sit still, walking, wiping the table, vacuuming, sweeping floor, lying

down, upper body exercise, stretching, cleaning stain and reading. The MET values for

each activity type is shown in Table 1, while sample images of each activity can be seen in

Figure 1. The activities performed contained a range of body positions, viewpoints and

distances associated with each activity. There are some gaps within the dataset for some

recorded sequences, due to various reasons such as some participants having difficulty

performing the exercise activity. Since silhouettes could not be generated in these cases,

the gaps were filled by randomly sampling input from the sequences of the same subject

with the same activity label.

4.2 Silhouettes

In order to keep the results consistent, a similar method to the method proposed by

Masullo et al. [45] was used to extract silhouettes from the video data. As such, average

silhouettes are also used to model the temporal structure in the video data. For N time

intervals ∆tn of decreasing length, a multi-scale temporal template is used to produce
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average silhouettes over various timescales

∆t1 > ∆t2 > · · · > ∆tn (4.1)

Using silhouettes within the interval i = [t−∆tk, t], an average silhouette was produced

for each time interval ∆tk

S̄k =
1

∆tk

t∑
i=t−∆tk

S(i) (4.2)

to produce one temporal silhouette S̄k for each ∆t, giving a total of N multi-scale temporal

silhouettes. In order to obtain the average silhouette at time t, all the multi-scale temporal

silhouettes are stacked into a 3D tensor S∗

S∗t ≡ S̄1, S̄2, . . . , S̄N (4.3)

where the third dimension is the stacked multi-scale temporal silhouette.

4.3 Data Augmentation

Data augmentation is a means of enlarging a dataset by performing minor alterations to

the existing dataset and introduce more variations into the data. This is particularly im-

portant when working with a smaller dataset like SPHERE-Calorie [62], as this removes

biases that could be associated with the recording location or any specific body poses

and motions. As temporal silhouettes are being used in this paper, it is not sufficient to

perform the traditional method of dealing with moving subjects by cropping the active

area and then resizing this area to a fixed size [28]. This is due to how the size of the

average silhouette is dependent on the subject’s motion for that time interval.

As such, average silhouette images were randomly flipped horizontally, tilted using a

rotation range of θ = ±5◦, and translated both horizontally and vertically using a random

shift of tx = ty = ±20% during training. The data augmentation parameters used are

similar to that of Masullo et al. [45] in order to keep the data consistent. It is worth not-

ing that some of the data augmentation procedures produced cropped silhouette images,

although this does not pose a problem as there are situations where the subject could be

in partial view of the camera.
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The data augmentation procedure for the accelerometer data involved multiplying the

acceleration magnitude with a scalar randomly sampled from a Gaussian distribution with

a mean of 1 and a standard deviation of 0.1, taking inspiration from Um et al. [68]. Along

with the random changes to the magnitude, the axes of each accelerometer were randomly

swapped according to random permutations.

4.4 Network Architecture and Implementation

Since CNNs are commonly used in computer vision, a CNN architecture was chosen

using two separate modalities as input, which consists of the 3D average silhouette S∗t

from equation 4.3, and a buffer of accelerometer data using the same time interval [t −

maxk(∆tk), t]. This network was implemented and trained using Keras, as depicted in

Figure 2, and the backend for this was chosen to be Tensorflow. A feature-level fusion

approach was used when combining the two silhouette and accelerometer branches in the

network. A shallow architecture was implemented using two stacks of layers for both

Figure 2: A visualisation of the network architecture, where silhouette data (upper

branch) and accelerometer data (lower branch) inputs are fused to produce EE estimation

as output.
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branches. The silhouette input consisted of a 240× 320× 5 tensor, where 5 time intervals

∆t are used such that

∆tk =
T

3k
, k = [0, . . . , N ] (4.4)

where T is the maximum buffer size of 1000 in the multi-scale temporal silhouette image,

and N = 4. For the accelerometer input, a 1000 × 6 tensor was obtained by using both

accelerometers as input and combining them into a 6-channel input. A high pass gravity

filter was then applied to the accelerometer data by using a Wiener filter [54] with a win-

dow size of 1 second to estimate the gravity vector. The direction from this gravity vector

is then subtracted from the accelerometer data to remove the minor effect of gravity on

the accelerometer data.

In the case of the silhouettes branch, each stack of layers consisted of a 3D convolu-

tion layer followed by a rectified linear unit (ReLu) activation function layer and a max

pooling layer. This branch used a pooling size of 2 and a stride length of 2 for each layer.

The accelerometer branch similarly made use of two stacks of sequential convolution-

activation-pooling layers. In this branch, average pooling was used, along with a kernel

size of 5 and a stride length of 2 for each layer as well. The first stack made use of 8

filters, while the second stack used 4.

The silhouette and accelerometer features that were extracted were then concatenated

and entered into one final fully connected layer for the estimation of calorific expenditure

using regression. The network was trained over 1000 epochs using the mean squared error

loss function which compared the error between the ground truth calorie measurements

CGT and the estimated calorie expenditure CP over all times t

Loss =
∑
t

(Ct
P − Ct

GT )2 (4.5)

By selecting the model with the lowest validation loss after the network has been trained

for a minimum of 30 epochs, the optimal parameters for the network are obtained. Thus,

the network is trainable from end-to-end.
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Chapter 5

Results

In order to test my results, leave-one-subject-out cross-validation was used on my network.

When training the network, a loss versus epochs graph was produced for each subject be-

ing left out. Figure 3 shows this plot for subject 9 being left out. It is observed that both

training loss and validation loss does indeed decrease over time as expected, however

there is a very long plateau without an increase in loss at the end. This shows that the

model achieves convergence but gains no improvements for the majority of epochs, indi-

cating that the training could possibly have been stopped earlier without losing accuracy.

Another observation is that the validation loss across all subjects is fairly noisy, which

is most likely due to the small size of the validation set even with data augmentation

applied, which could be improved with more samples to train the network on. The high

variability in training loss can also be interpreted to be due to the learning rate being too

high for the dataset.

The root mean square error (RMSE) between the EE estimation (per minute) and the

ground truth for each activity was calculated in order to provide an understanding of the

accuracy of the model. This was obtained by first calculating the mean errors for each

activity type, before averaging across the errors for each subject. In order to evaluate the

network’s performance, the results obtained from my network were compared against a

baseline of the results obtained from METs tables, along with previous state-of-the-art

work on the same dataset from Tao et al. [63], which used hand-crafted features and non-

linear Support Vector Machines (SVMs) for activity classification and a linear support

vector regressor for EE estimation, and Masullo et al. [45], which made use of a CNN
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Figure 3: The training loss and validation loss for a single subject being left out (Subject

9) plotted against epochs.

that was trainable end-to-end. Both of these works performed a fusion of both modalities

of video data and accelerometer data. A comparison of the results is shown in Figure

4, where the overall error was calculated by calculating the RMSE across all subjects

without taking into account the activity performed. Both the methods of METs lookup

and Tao et al. [63] do not produce EE estimations for activities with no label and hence,

have no RMSE associated.

Figure 4 shows that the technique of using METs tables produces the highest overall

error of 1.50 cal/min. Since METs tables do not take the individual into account but

instead use a statistical approach as mentioned previously, this result is to be expected

in a dataset with a small number of subjects. The work from Tao et al. [63] produced

an overall RMSE of 1.30 cal/min, showing an improvement over that of METs tables

for most cases. CaloriNet, as proposed by Masullo et al. [45], was found to still produce

the best results at 0.88 cal/min for overall RMSE, although my network produced very

comparable results to Masullo et al. [45], producing an overall RMSE of 0.91 cal/min,

resulting in a 3.4% difference in overall error. This could be due to differences in how my
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Figure 4: Comparison of the average per-activity RMSE between calorie expenditure

estimation and ground truth values.

network was trained, but shows that I’ve managed to replicate the results of Masullo et

al. [45] within a reasonable margin of error.

It is also noted that, similar to the findings of Masullo et al. [45], all the techniques

tested were found to produce a much higher error when estimating EE for the Exercise

and Stretch activity classes. This is highly likely to be due to the inter-class and intra-

class variance of these activities which is much higher as compared to the variance of other

classes of activities, estimated to be at least 20 times higher [45]. In order to solve the

problem of a small training dataset, a wider range of activity classes could be sampled,

with more subjects from different backgrounds to introduce more variability in subject

metabolism and physical fitness. A richer dataset such as this could reduce this error and

lead to better accuracy in EE estimation.
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Chapter 6

Conclusion

In this thesis, we have recreated the work by Masullo et al. on CaloriNet to a reason-

able degree of accuracy. The fused CNN created is able to succesfully estimate EE from

a combination of silhouette data and accelerometer data with the accuracy of the cur-

rent state-of-the-art. This method is thus suitable for the use of online EE estimation of

household activities during normal daily living in the home environment as it preserves

the privacy and anonymity of the individual, and allows the individual to move around

freely without being inconvenienced by wearing calorimetry instruments.

In Chapter 2 we provided a comprehensive overview of the different technologies and

methodologies for EE estimation. We then provided a thorough discussion of the current

approaches to activity recognition and EE estimation using computer vision.

In Chapter 3, we analysed the different technologies required to perform EE estima-

tion in the home environment while maintaining privacy. We looked at two techniques of

extracting silhouette data from RGB-D data, before providing a discussion of temporal

modelling through the use of average silhouettes. We then provided a broad explanation

of the theory underlying neural networks and the properties of some neural network ar-

chitectures.

In Chapter 4, we outline the details of the developed method for EE estimation using

silhouettes and accelerometer data. First, we described the SPHERE-Calorie dataset in

section 4.1. In section 4.2, we explain the process of generating multi-scale temporal sil-
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houettes from raw silhouettes. Next, in section 4.3, we discussed how data augmentation

was performed on the SPHERE-Calorie dataset in order to enlarge the existing dataset.

Finally, section 4.4 provides a detailed explanation of my implementation of the network

architecture proposed by Masullo et al. [45]

In Chapter 5, we presented the process of evaluating the trained network. First, we

analysed the loss versus epochs graph when training the network. We then evaluated my

model by comparing the performance, in terms of RMSE, of my model against a standard

METs table approach and against previous work on the same dataset: the work of Tao et

al. [63] and Masullo et al. [45]. This was followed by a discussion of the results and the

challenges associated with the developed method.

6.1 Future Work

Going forward, there are still improvements that could be made to the estimation ac-

curacy of CaloriNet while still maintaining the data-fusion approach. We propose three

different directions in which to extend this project for future work.

First, the trained model is only able to produce calorie expenditure estimations as its

output. It might be useful for it to be trained in such a way that the physical activity

labels are also produced as a target. This could potentially increase the accuracy of the

network when trained end-to-end to produce activity labels on its own. Moreover, this

might also increase the robustness of the network to be able to handle even more activity

classes.

Another extension would be to explore and compare the effectiveness of using a dif-

ferent network architecture entirely. Due to how little the area of EE estimation using

computer vision has been explored, not as much research has been done on the benefit of

using different network architectures such as RNNs, and using different fusion approaches

for the two modalities of silhouettes and accelerometer data. As such, there is great value

in investigating how different network architectures and fusion approaches might affect

the accuracy and efficiency of EE estimation.
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Lastly, the model could be extended to be trained on a larger and more comprehensive

dataset. Since there are very few studies looking at EE estimation using both RGB-D

data and accelerometer data, an ambitious extension for this project would be to extend

the dataset further to include more participants and a wider range of activity classes,

allowing for better accuracy of EE estimation.
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